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Abstract. Among populations of the Miniopterus bats of western Palaearctic, intraspecific variation has not been well documented. Herein
we investigate sexual and age variation of these populations using two approaches — linear and geometric morphometrics. We analysed
Moroccan (M. maghrebesnis), western and eastern European (M. schreibersii), Levantine (M. schreibersii), and east-Afghanistani (M.
cf. fuliginosus) specimens; variation was compared between sexes of the particular specimen sets of three above mentioned Miniopterus
spp. and between four age cohorts of M. schreibersii samples. The results showed in all examined population sets males to be generally
larger in size than females, the exception being the east-European animals. Significatly the most divergent sexes were those from eastern
Afghanistan, the Levant and eastern Europe. The differences found between sexes in as well as between examined population sets can
be attributed to different life histories and/or to food competition. Weak correlations between patterns of sexual dimorphism and the
newly proposed western Palaearctic classification of the Miniopterus bats suggest only a limited contribution of sexual variation to
morphological variation in general. Certain aspects of age variaton were found in all examined morphological characters except the non-

metric traits, which in turn indicates the importance of these traits for identification of the particular taxon across age categories.
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Introduction

Bent-winged bats, the genus Miniopterus Bonaparte,
1837, represent the only genus of the family
Miniopteridae. It comprises some 20 species
occurring mainly in the tropics and sub-tropics of the
Old World (Simmons 2005). Morphometric as well
as molecular phylogenetic analyses (e.g. Tate 1941,
Maeda 1982, Appleton et al. 2004, Tian et al. 2004,
Miller-Butterworth et al. 2005, Benda et al. 2006,
Furman et al. 2008, 2010) indicate that identification
of particular taxa (species/subspecies) of the genus
is often difficult according to their similar or even
cryptic phenotype.

In the western Palaearctic (North Africa and Eurasia to
the west of Pakistan), at least four species of the genus
have been documented: Schreibers’ bat, Miniopterus
schreibersii Kuhl, 1817; pallid bent-winged bat, M.
pallidus Thomas, 1907; Indian bent-winged bat, M.
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cf. fuliginosus Hodgson, 1835; and Maghrebian bent-
winged bat, M. maghrebensis Puechmaille, Allegrini,
Benda, Bilgin, Ibanez & Juste, 2014. M. schreibersii
occurs in southern Europe, coastal areas of North
Africa and in the western areas of the Middle East
(Furman et al. 2010, Sramek et al. 2013, Puechmaille
et al. 2014) while M. pallidus, morphologically almost
identical with the M. schreibersii (Furman et al. 2010,
Sramek et al. 2013), occurs in the eastern portion
of the Middle East (Furman et al. 2010, Sramek et
al. 2013). The Nangarhar Province of Afghanistan
perhaps represents the westernmost occurrence area
of another Miniopterus sp. whose taxonomic position
is currently unclear; Maeda (1982) and Sramek et al.
(2013) proposed that this population is best attributed
to M. fuliginosus. Recently another species, M.
maghrebensis, morphologicaly very similar to M.
schreibersii s. str., was described from the mountainous
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parts of the Maghreb (southern parts of Morocco and
Tunisia). Its distribution range as well as the level of
sympatry with M. schreibersii remain to be clarified.
Sexual dimorphism in morphometric characteristics
was shown in bats to be relatively an important factor of
species variation (e.g. Findley & Traut 1970, Schmidt
1978, Maeda 1983); however, within the genus
Miniopterus, it has not been broadly studied. Maeda
(1982, 1983, 1984) analysed this variation in several
Australasian species (M. macrodens, M. magneter,
M. australis, M. fuliginosus, and M. solomonensis).
Goodman et al. (2008) studied variation in two cryptic
species from Madagascar, M. gleni and M. griffithsii.
Concerning the western Palaearctic populations
of Miniopterus, Gaisler (1970) analysed bats from
castern Afghanistan (Jalalabad area) and found no
sexual dimorhism. Crucitti (1976), Spitzenberger
(1981) and Uhrin et al. (1997) examined specimens of
M. schreibersii s. str. from Italy, Austria and Slovakia.
In all these studies the authors found (with more or
less high statistical significance) males to be larger
than females in majority of their cranial or external
dimensions. To our knowledge no dental as well as
specific non-metrical characters have been analysed
yet in western Palaearctic Miniopterus populations.
Little information is available on age variation
in Miniopterus spp. Maeda (1977, 1982) studied
populations from Japan and found presence of age
variation in many skull characters. Van der Merwe
(1978) analysed post-natal growth (body mass,
hindfoot and forearm lengths) of M. natalensis (sensu
Simmons 2005) from South Africa and Serra-Cobo
(1987) investegated postnatal forearm growth of M.
schreibersii s. str. from southern Spain.

Here, we present a detailed morphometric analysis
(combination of traditional linear morphometrics,
geometric morphometrics and non-metric data
analyses) of cranial and dental characters of the above
mentioned four western Palaearctic Miniopterus
species to assess aspects of their sexual and age
variation. Simultaneously, we attempt to ascertain
the role of the sexual variation patterns of respective
populations in their taxonomic classification (cf.
Sramek et al. 2013).

Material and Methods

To examine intrapopulation (sexual and age) variation
in various cranial and dental metric or non-metric
characters of western Palaearctic Miniopterus bats, we
studied 342 skulls (see Appendix 1 and Material and
Methods in Sramek et al. 2013 for the list of specimens,
their origin, species affiliation and determination). To

examine aspects of sexual dimorphism, the specimens
were divided into five population sets based on
previously published results (Sramek et al. 2013):
(1) Morocco (8 4d, 10 29); (2) western Europe —
specimens from Spain, France, Italy, Austria (14 33,
20 99, three unsexed); (3) eastern Europe — Slovakia,
Romania, Bulgaria, and Greece (including Crete) (49
43, 89 99, 14 unsexed); (4) the Levant — Turkey,
Syria, Cyprus, Lebanon (54 &3, 37 99); (5) eastern
Afghanistan (18 &, 9 22, one unsexed). Specimens
lacking sex identification were not used for the
sexual dimorphism analysis. According to identified
rate of tooth wearing (Fig. 1) in the specimens of M.
schreibersii s. str. (i.e. groups 2-4), these specimens
were divided into four age groups for purpose of the
age variation analysis: CO — unweaned juveniles,
no abrasion; C1 — weaned juveniles, slightly worn
dentition; C2 — adults, middle worn dentition; C3 —
adults, heavily worn dentition. All statistical analyses
were performed using the Statistica 6.0 software.

Fig. 1. Defined scale system of abrasion. Rate of abrasion is in
ascending order.

Linear morphometrics

We recorded 24 cranio-dental measurements (11
skull or mandible measurements and 13 upper or
lower tooth-row dimensions) taken with a mechanical
calliper (by J. Sramek) to the nearest 0.01 mm. Further,
we recorded 57 dental measurements (width, length
and heigh dimensions of respective teeth) using an
optical calliper (by J. Sramek) to the nearest 0.0125
mm. For complete list of all examined measurements,
see Appendix SI, Figs. S1 and S2 in Sramek et al.
(2013).

Basic descriptive statistical parameters (mean [M],
minimum value [min], maximum value [max],
standard deviation [SD]) were calculated separately
for each measurement of each geographical group (1-
5) and sex, and of each age cohort (C0O-C3). Sexual
size variation was analysed via the one-way analysis
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of variance (ANOVA), independent t-test and Storer’s
index. Storer’s index is a value expressing relative
difference of metric (or non-metric) character(s)
between sexes (Storer 1966) and is calculated
according to the formula [(Mf — Mm)/Mn] x 100 (M
= mean, f = female, m = male, n = all specimens).
Negative values indicate the relatively larger size for
males, positive values for females (cf. Bogdanowicz
1992, Benda 1994).

Geometric morphometrics and non-metric traits
Geometric morphometrics was used to analyse
skull and mandible variation between sexes of the
respective population sets (groups 1-5) and also partly
(see below) between age cohorts. We used the same
specimens as for the linear morphometrics.

Images of skulls (lateral, ventral and dorsal views),
mandibles (lateral and oclusal views) and dentition
(details of the upper and lower tooth-rows) were taken
with a digital camera, archived in jpg format (1360 X
1200 pixels resolution) and processed with QuickPhoto
4.1 (Promicra, Prague). The centroid size (CS) as well
as the relative warp (RW) scores of all types of view for
each specimen (CS1 [G1 in case of RW] — lateral view
of mandible, CS2 [G2 in case of RW] — lateral view of
skull, CS3 [G3 in case of RW] — ventral view of skull,
CS4 [G4 in case of RW] — dorsal view of skull) were
calculated using the tpsRegr 1.36 (for CS calculation;
Rohlf 2009) and tpsRelw 1.46 software package (for
RW calculation; Rohlf 2008). For methodology details
see Sramek et al. (2013). The RW and CS scores were
analysed by the same methods as the linear metric
data (basic descriptive statistics, one-way ANOVA,
independent t-test; Storer’s index only for CS scores).
The RW analysis as well as Storer’s index calculation
of the data of age cohorts was not performed.

Based on images of skulls, mandibles and teeth, 49
non-metric cranial and dental characters (44 dental
and five skull or mandible; see Table S1 in Sramek
et al. 2013) were investigated for each geographical
group (1-5) and sex, and for each age cohort (C0-C3).
Statuses of these characters were evaluated using
the defined scale system 1-5 in accordance to the
character state (see Fig. S3 in Sramek et al. 2013 for
details). Non-metric data were analysed in the same
manner as the linear metric data.

Results

Sexual variation

Linear morphometrics

Results of the analyses (ANOVA, t-test) as well
as Storer’s index values of cranio-dental and tooth

dimensions (Tables 1 and 2, and Tables S1 and S2)
generally showed that the most significant differences
associated with sexual dimorphism were found in
populations from Afghanistan, the Levant and eastern
Europe while those from Morocco and western
Europe diverged only in a few variables. The results
indicate that males are generally larger within a given
population sets, with the exception of eastern Europe.
In all cranio-dental measurements the Moroccan
males showed larger values than females except for
dimensions associated with skull and rostral width
(LaZ, Lal, Lalnf, CC, P*P4, and M*M?), but the sexes
just slightly diverged (P < 0.05) in the length of upper
tooth-row (P*M?). In dental characters, the Moroccan
females were larger in 38 of 57 variables and the
sexes highly diverged (P < 0.001) in the length of
lower canine (LC, ); slightly diverged in widths of
the second lower incisor (WL)), second upper molar
(in central part, W2M?) and third lower molar (WM?).
Males of the western European bats showed values
larger than those of females in almost of all cranio-
dental measurements, with the exception of all upper
tooth-row dimensions. Sexes moderately diverged (P
< 0.01) in the condylobasal length (LCb) and only
slightly diverged in the length of upper tooth-row
(CM,). Teeth showed larger values more likely in
males in 30 of 57 measurements; the sexes diverged
(moderately) only in the first lower molar diagonal
width (W3M).

In the eastern European bats, females showed values
larger than those of males in most cranio-dental
measurements, with the exception of zygomatic width
(LaZ), skull heights (ACr, ANc, ACo) and partly in
tooth-rows length (P*M?, P,M,). Sexes highly diverged
in the length characters (LCr, LCb); moderately
diverged in mastoidal width (LaM), mandible and lower
tooth-row length (LMd, I M,); and slightly diverged in
length of tooth-rows (I'M°, CM?, CP*, CM,, CP,). In
the majority of dental characters (40 of 57) females
showed larger values than in males, with the exception
of most height dimensions. The sexes were highly
divergent in the widths of the second upper molar
(in central part, W2M,) and the second lower incisor
(LL); moderately diverged in the second upper molar
diagonal width (W1M?), length and width of the third
lower incisor (LI, WL,), length of the second lower
premolar (LP,) and height of lower canine (HC, ); and
slightly diverged in some dimensions of the first upper
incisor (WI', HI'), molars (W2M!, W3M?, WM3) and
height of the second lower incisor (HL).

In all cranio-dental measurements males of the
Levantine bats showed larger values than those of
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females, with the exception of lower molar-row length
(M M,). They highly diverged in skull length (LCr,
LCb), braincase dimesions (LaN, ANc); moderately
diverged in mastoidal width (LaM) and length of
upper tooth-row (I'M?, CM?); and slightly diverged in
skull height (ACr) and partly in the tooth-rows lengths
(CP*, CM,). In dental characters males showed values
larger than females in 38 of 57 dimensions. Sexes
highly diverged in some canine dimensions (HC™?,
HC, ., LC,); moderately in lower canine width
(WC, )); and slightly in upper canine width (WC*)
and the dimensions of upper second premolar (WP?,
HPY).

Males of Afghanistan Miniopterus were larger than
females in all cranio-dental characters (except of
lower molar-row length, M M,). The sexes were
highly divergent in condylobasal length (LCb), rostral
width across the upper canines (CC) and upper tooth-
row length (I'M?); moderately divergent in the skull
and mandible length (LCr, LMd); and slightly in
some skull widths (LaM, LaN, Lalnf, P‘P4, M’M?),
neurocranium height (ANc) and some tooth-rows
lengths (CM?, CP,). Dental measurements were larger
in males in 42 of 57 dimensions, particularly in height
dimensions, and sexes highly diverged in height of
lower canine (HC, , Fig. 2); moderately diverged
in the length of upper canine (LC***) and height of
first upper incisor (HI'); and slightly diverged in the
lengths of the first upper incisor (LI'), lower canine
(LC, ) and the second premolar (LP,), in the height of
the upper canine (HC™», Fig. 2) and in the width of the
first lower molar (W2M,).

Fig. 2. Sexual size variation in upper (left) and lower (right) canines
of bats from eastern Afghanistan.

Geometric morphometrics and non-metric traits

Cendroid size scores (see Table 1 and S1) showed
larger values in males than in those of females in all
views and examined population sets (significantly
[P < 0.05] except for CS1 of the Afghanistani and
western European sets, CS3 of the western European
set, and for all views of the Moroccan set), except the

eastern European set, where females showed larger
values in all views (significantely except CS2). The
significance level for respective views and groups
was rather variable (see Table 1 and S1).

Twenty-two RWs were generated for the lateral skull
view for both sexes of each population set, 18 for
the ventral view, 14 for the dorsal view, and 14 for
the lateral view of the mandible. The first four RWs,
which together represented more than 50 % of total
variation for each view, were used for subsequent
analyses (ANOVA, t-test). These generally showed
minimal shape differences between sexes of all
examined population sets (Table 1 and S1).

Results of analyses (ANOVA, t-test), as well as
Storer’s index values, of non-metric traits showed
various levels of sexual dimorphism in the respective
population sets in size parameters as well as in notably
variable levels of statistical significance (Table S3).
The sexes of Moroccan bats only slightly diverged
in P2P4inf2, CingM2sup and RmanW. The sexes of
the western European bats moderately diverged in
P4sup2 and CingCsup, while only slightly in Fmen
and M3sup. The sexes of eastern European bats highly
diverged only in Ml1sup, moderately in Fmen, and
slightly in P3inf2, M3sup2, M2sup, P4sup, P4sup8,
CingCsup, ProcCW and Isup. The sexes of Levantine
bats moderately diverged in P4inf and slightly in
P3inf2, P2P4inf2, P3P4inf, FmenP2inf, M1sup5 and
P4sup5. The sexes of Afghanistan bats only slightly
diverged in M3sup.

Age variation

Linear morphometrics

The values of all cranio-dental measurements of four
age cohorts and their simple comparisons (Table 3
or Fig. S1) showed certain level of age variation. In
most of these dimensions, the size of the respective
character was found to increase with age. This pattern
was found to be inversed (the dimensions descreased
in size with age) only in some dimensions concerning
molariform teeth (P*M3, M'M?, P M, and M\M,). In
the dental dimensions (Table 4 and S4 or Fig. S2),
the situation was markedly less expressive than in
the cranio-dental measurements and in some (mainly
tooth length) dimensions (LI', LI>, LoM', LI,, LM,
and LM,), the above mentioned pattern was found to
be inverse, 1.e. with dimensions smaller in older bats.

Geometric morphometrics and non-metric traits

CS scores showed considerable age variation and
positive correlation between age and value of the
respective centroid size, i.e. the higher cohort (older
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bats) the larger the centroid size value. Only the
mandibular CS scores showed an inverse pattern
(except for the C3 cohort whose values were markedly
highest among all cohorts). For details see Table 3 or
Fig. S1.

The non-metric traits data did not show a general
correlation between age and value of the particular
character (Table S5). Differences in character values
between the respective cohorts were largely not
present, with the exception of P2P4inf.

Discussion

Synthesis of results of the sexual dimorphism
analysis of the western Palaearctic Miniopterus
bats, comprising the Moroccan, western and eastern
European, Levantine and eastern Afghanistani
populations, indicates that males are larger than
females in all examined geographical sample sets,
with the exception of eastern Europe. These results
are in parallel to the majority of published studies
of Miniopterus populations in different portions of
the Palaearctic (Crucitti 1976, Spitzenberger 1981,
Maeda 1982, 1983, 1984). Only Uhrin et al. (1997)
who studied Slovakian populations, on the contrary to
our results, found the males to be generally larger than
females. Nevertheless, it is important to mention that
the Slovakian specimens comprised a minority in our
eastern European set (29 Slovakian vs. 109 Balkan
samples) and individual populations thus could have
different characteristics. Unfortunately, our samples
were insufficient to test Slovakian bats separately as
well as any other population within this sample set,
with the exception of Bulgarian bats, in which males
were generally larger than females. Moreover, our
finding of sexual dimorphism in cranial dimension
in Miniopterus bats from eastern Afghanistan is in
contradiction with that by Gaisler (1970) who found
no sexual differences in Miniopterus bats from the
same locality. This dissimilarity may be the result of
measuring specimens in different manners, as well as
more precise statistical analyses of our data.

Sexual dimorphism is generally explained by several
hypotheses. The most common being male-male
competition for females (or selection by females;
Darwin 1871, Trivers 1972) or male-female food
competition (e.g. Selander 1966, Storer 1966, Earhart
& Johnson 1970). Among chiropterans, there are also
other proposed hypotheses, such as ‘The Big Mother’
hypothesis (Ralls 1976), which suggests that larger
females give their offspring better conditions and
this system subsequently lead to females of a given
taxon being larger than males. Myers (1978) found

positive correlation between sexual dimorphism of
vespertilionid bats and number of young per litter,
similarly as Brunett (1983) in Eptesicus fuscus, and
proposed that female body size (particularly wing
size) is positively influenced by the need to carry
in flight and nourish large foetus or carry young
juveniles. Williams & Findley (1979) tested this
hypothesis; however, did not find this correlation.
They and some other authors (Findley & Traut 1970,
Findley & Wilson 1982) explained the larger size of
the vespertilionid females in relation to the gravidity
process and some climatic conditions (temperature,
humidity) — larger females are more resistant to
hypothermia and associated perturbations in embryo
development and, also, the larger size provides greater
energetic efficiency in maintaining homeothermy
during gestation while males are hypothermic.
Climatic conditions in connection with different
life history traits of the respective sexes were found
in some small insectivorous bat species associated
with sexual dimorphism (e.g. Egsback & Jensen
1963, Bogdanowicz 1992). In the case of Myotis
daubentonii, the precise mechanism involved in the
development of sexual dimorphism was connected
with different periods of time spent in hibernacula;
males fly out to foraging activities in early spring
while females stay and are more exposed to climatic
stresses (low temperature, high humidity) (Egsbaek
& Jensen 1963, Stebbings 1977, Baagoee et al. 1988).
Larger size then provides greater energetic efficiency
in maintaining homeothermy and thus means benefit
for females.

However, our results showed males of Miniopterus
bats to be generally larger than females (with an
exception of the eastern Europan populations). Hence,
sexual dimorphism differences are presumably related
to different factors or, to the same factors but affected
by other mechanisms. We speculate that these factors
involved may be in parallel to the case of Myotis
daubentonii, specifically associated with different
climatic conditions affecting differentially aspects
between the sexes in life history traits at the population
level, such as the use of seasonally different shelters
(hibernacula) or different periods of their usage,
forming of sex-specific colonies. These factors may
also be directly related to differences in patterns
of sexual dimorphism at the population level (i.e.
females larger than males in eastern Europe vs. males
larger than females in Morocco, western Europe, the
Levant, and Afghanistan). Nevertheless, to elucidate
the machanisms leading to development of sexual
dimorphism of the respective Miniopterus populations
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concerning their life histories of their sexes remain
to be studied, since they were generally not much
explored yet (Spitzenberger 1981, Boye 2004).

Another factor that might contribute to sexual
dimorphism in Miniopterus may be associated
with the feeding strategies (food competition). We
documented in some sample sets (mainly in Levantine
and Afghanistani sets) very marked dimorphism
in dentition (positively correlating with the level
of dimorphism in skull dimensions), particularly
in canines and this finding may thus indicate
intraspecific food competition that consequently led
to male adaptations to different prey types of size
than in females, and consequently the generally
larger size in the former. However, this was not
documented in other bat species (Krzanowski 1971)
and this hypothesis is not corroborated with some of
our other results, specifically weak dimorphism and
larger dentition in females of eastern European and
Moroccan populations. To conclude, the differences
in patterns of sexual dimorphism between studied
population sets might be best explained by different
effects or combination of effects of two different
factors — distinct life histories and feeding strategies.
The level of sexual dimorphism found among the
examined population sets does not fully correlate
with the classification of the western Palaearctic
bats of the genus Miniopterus as presented in recent
revision (Sramek et al. 2013). Most particularly,
the different patterns of dimorphism found in the
western (larger males) and eastern (larger females)
European populations are surprising. In other areas,
these patterns were quite similar to each other;
however, the level of significance diverged. The
most significant dimorphism was found in bats from
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Supplementary online materials

Fig. S1. Graphs of mean values of cranio-dental measurements and of mean CS values for respective cohorts. See methods for
explanation of dimension abbreviations.

Fig. S2. Graphs of mean values of dental measurements for respective cohorts. See methods for explanation of dimension abbreviations.
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Table S1. Cranio-dental dimensions (in mm), CS and RW scores of the Miniopterus sexes in the respective populations. See methods
for explanation of dimension abbreviations. » = number of specimens, M = mean, min = minimum value, max = maximum value, SD =
standard deviation, * = P < (.05, ** =P <0.001, *** =P <0.0001, F = F-values from ANOVA and T-test, SI = Storer’s index.

Table S2. Dental dimensions (in mm) of the Miniopterus sexes in the respective populations. See methods for explanation of dimension
abbreviations. 7 = number of specimens, M = mean, min = minimum value, max = maximum value, SD = standard deviation, * =P <
0.05, ** =P <0.001, *** =P <0.0001, F = F-values from ANOVA and T-test, SI = Storer’s index.

Table S3. Non-metric traits of the Miniopterus sexes in the respective populations. See methods for explanation of dimension
abbreviations. n = number of specimens, M = mean, min = minimum value, max = maximum value, SD = standard deviation, * =P <
0.05, ** =P <0.001, *** =P <0.0001, F = F-values from ANOVA and T-test, SI = Storer’s index.

Table S4. Dental dimensions (in mm) of the examined M. schreibersii age cohorts. See methods for explanation of dimension
abbreviations. M = mean, min = minimum value, max = maximum value, and SD = standard deviation.

Table S5. Non-metric traits of the examined M. schreibersii age cohorts. See methods for explanation of dimension abbreviations. M =
mean, min = minimum value, max = maximum value, and SD = standard deviation.

(URL: http://www.ivb.cz/folia/download/sramek benda supp.docx).
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